
 

 

 

 

 

Machine Learning: Playing Blackjack 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Richard Gaggioli 

December 20, 2013 

University of Wisconsin ‐ Madison 

ME 539 

Instructor: Yu Hu 

 

 

 

 



Introduction 

 There are two types of decisions a player makes while playing blackjack: how much to 

bet and whether to hit or stay. The purpose of this project was to use what I have learned in ME 

539 to make decisions in the game of blackjack. In blackjack the dealer has an advantage over all 

of the players. Most of this advantage is a result of the dealer always playing last. Along with 

this, if a player busts he loses regardless of whether or not the dealer busts. For example if there 

are four players and two of the players and the dealer bust, the dealer pays the two who did not 

bust but the two players who did bust pay the dealer. Therefor on a hand that the dealer busted, 

he came out even. In order to gain advantage over the dealer I chose to use the k-nearest 

neighbor algorithm to make decisions for the players.  

 

Works Performed 

 I started by making a simple blackjack implementation in Matlab where a player can bet 

1, 2, or 3, and choose to hit or stay on their appropriate turn. The dealer stands on all 17’s. I first 

attempted to gain advantage over the dealer where the players could only bet 1 each hand and the 

card count was not a part of the feature set. This proved to be largely unsuccessful so I tried 

using different features.  

 

 Table 1 shows the given features I ultimately chose. The first ten features show what 

percentage of the deck a given card occupies. Feature 1 is the number of aces left in the deck 

divided by the total number of cards left in the deck. Feature 2 shows the percentage of 2’s, etc. 

Feature 10 shows the number of 10’s, Jacks, Queens, and Kings divided by the total number of 

cards left in the deck. Feature 11 is the card count. For every card dealt if it is a 2-6 you add 1 to 

the card count. If the card is a 10, Jack, Queen, King, or Ace you subtract 1 from the card count. 

For the other cards the count remains the same. 

 

 The decision for how much to bet used features 1-11 and returned features 15-17. Where 

a 1 in feature 1 corresponds to a bet of 1, a 1 in feature 2 corresponds to a bet of 2 and a 1 in 

feature 17 corresponds to a bet of 3. For the hit or stay decision, features 1-14 were used. The 

classifier return features 18-19 where a 1 in feature 18 corresponds to the decision to hit and a 1 

in the feature 19 means stay. 

 

Table 1: Feature Set 

Features 
1-10  

Feature 
11 

Feature 
12 

Feature 
13 

Feature 
14 

Feature 
15 

Feature 
16 

Feature 
17 

Feature 
18 

Feature 
19 

Percent 
of Card 
in Deck 

Card 
Count 

Unused 
Aces in 
hand 

Showing 
Card 

Players 
Score Bet 1 Bet 2 Bet 3 Hit  Stay 

 

In order to implement the kNN classifier I created a starting data set of 50 hands. Over 

these fifty hands there was one player who bet 1 if the card count was less than ten, bet 2 if the 

card count was greater or equal to ten but less than 24 and bet 3 when the card count was greater 

than 25. Also over these 50 hands the player stayed with a score 16 or greater.  



 

 After generating these fifty hands I simulated a blackjack table with two players. Each 

player placed there bet using the kNN classifier and then when their turn came they used the 

classifier to hit or stay. After every hand the feature vectors would be created based on the 

success of the decisions a given player made. These feature vectors were then added to the 

working data set. This created a reinforcement learning environment. If a player wins the hand 

all of the decisions are added to the data set. If the player loses, his bet amount is incremented 

down one, unless it is already the minimum. Along with this, his last decision in his hand is 

flipped. For example, if a player loses because he busted then the last option he had, he should 

have stayed. So this feature vector is relabeled to be a stay. If he stayed and lost, he should have 

hit. This is generally true. 

 

Results 

Several different k values were used to see which would have the best results. I found 

that for the betting decision it was best to use k = 5 nearest neighbors and for the hit or stay 

decision was best for k = 5 as well. For hit stay, k = 10 was very close however.  Figure 1 shows 

how well the classifier worked when k = 5 for betting for both players and k =5 or 10 as labeled.   

 

 

 
Figure 1: Player’s Totals over 5000 hands. k = 5 for betting and k =5 or 10 for hit or stay 

as labeled. 

 



Discussion 

 After my original attempt to gain advantage over the deal with a constant bet amount and 

without the card count as a feature, I made some vital observations. The main observation that I 

made is the best way to beat the dealer is by choosing the correct amount to bet. The winning or 

losing of any given hand is largely statistical. If the card count is high you have the best chance 

of getting a large score with the first two cards. Also if the dealer has to hit he is more likely to 

bust. By riding out the hands were the card count is low and cashing in on the hands when the 

count is high, a player can make the most profit. 

  

 By using a feature set generated from general strategy in blackjack as a starting point, I 

was able to make better and better decisions using kNN classifier in order to have consistently 

successful blackjack play. Using the success or failure of previous hands this program was able 

to make the best decision for a given state of a hand.  


